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ABSTRACT: In this paper, we used a 3D nanoporous carbon
(NanoPC) with a high specific surface area of 1037 m2/g as a carbon
support for high-temperature polymer electrolyte fuel cell, and
fabricated an electrocatalyst (NanoPC/PyPBI/Pt) having platinum
nanoparticles of ∼2.2 nm diameter deposited on the NanoPC that was
wrapped by poly[2,2′-(2,6-pyridine)-5,5′-bibenzimidazole] (PyPBI).
Even after 10 000 start-up/shutdown cycles in the range of 1.0 to 1.5
V vs. RHE, the NanoPC/PyPBI/Pt showed almost no loss in
electrochemical surface area (ECSA), which indicated much higher
durability than those of a CB/PyPBI/Pt (∼32% loss), in which
conventional carbon black (CB) was used in place of the NanoPC, and conventional CB/Pt (∼46% loss). The power density of
the NanoPC/PyPBI/Pt was 342 mW/cm2, which was much higher than those of the CB/PyPBI/Pt (183 mW/cm2) and CB/Pt
(115 mW/cm2).
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■ INTRODUCTION

Polymer electrolyte fuel cells (PEFCs) have the potential to
alleviate major problems associated with the production and
consumption of energy, considered as promising, attractive,
reliable, and clean energy generation for automotive and
stationary applications;1−4 thus considerable attention has been
focused on the high-temperature PEFCs (>100 °C), due to
their benefiting PEFCs with higher carbon monoxide (CO)
tolerance, faster electrochemical kinetics, and better water
management than those of conventional PEFCs.2,5−9 However,
the high-temperature PEFCs also suffer from their low
durability in terms of carbon corrosion and platinum
nanoparticles (Pt-NPs) aggregation resulting in the detachment
of the Pt-NPs from the catalysts and loss in electrochemical
surface area (ECSA) as well as the degradation of FC
performance.10−12 Thus, enhancement in durability is highly
demanded for the commercialization of the next-generation
PEFCs.13

Recently, the fabrication and pore arrangement of the
nanostructured materials become very important in many fields
including PEFCs.14 Nanoporous carbon (NanoPC) has a
porous structure with a higher surface area that has a high

potential to be a supporting carbon of PEFCs.15−17 Meanwhile,
the pores provide a pathway to facilitate the mass transport of
reactants to the active sites and products of the fuel cell
reaction, avoiding the transportation and diffusion limitations,
which improves the fuel cell performance.18−21 Arenz et al.
reported that Pt loaded on Ketjenblack showed higher
durability than that of Pt loaded on Vulcan, in which the
Ketjenblack showed ∼3 times higher specific surface area than
that of Vulcan.22,23 Ogi et al. reported that the Pt-NPs loaded
on a porous carbon were more stable than those deposited on
CB.24 Shukla et al. reported that the Pt-NPs deposited on a
polymer-wrapped NanoPC were durable against carbon
corrosion.25,26 However, these electrocatalysts are limited in
use of the material in high-temperature PFECs due to the lack
of proton conduction in the catalyst layer since Nafion
ionomers used in such studies work only under 100 °C.27−29

We have already reported that poly[2,2′-(2,6-pyridine)-5,5′-
bibenzimidazole] (PyPBI) is an efficient dispersant for carbon
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supporting materials and provides the anchor sites for the Pt-
NPs as well as creating the so-called three-phase boundary
(TPB), in which the PyPBI functionalizes as a proton
conductor transferring the proton generated from the oxidation
of H2 by the Pt-NPs at high-temperature.30−33 In this study, we
used PyPBI to wrap nanoporous carbon (NanoPC) before Pt-
loading as schematically shown in Figure 1 in order to obtain a

NanoPC/PyPBI/Pt electrocatalyst. The electrochemical surface
area (ECSA), durability, and high temperature fuel cell
performance of the prepared electrocatalyst have been
measured and compared its performance to the conventional
CB/Pt and CB/PyPBI/Pt electrocatalysts.

■ EXPERIMENTAL SECTION
Materials. LiBr was purchased from Nacalai Tesque Inc. Hydrogen

hexachloroplatinate hexahydrate (H2PtCl6·6H2O), 2-propanol, N,N-
dimethylacetamide (DMAc), ethylene glycol (EG) and 85%
phosphoric acid (PA) were purchased from Wako Pure Chemical
Industries, Ltd. CB (Vulcan XC-72R) was purchased from Cabot
Chemical Co., Ltd. All the chemicals were used as received without
any purification. NanoPC was synthesized according to previous
reports.34 PyPBI and poly[2,2′-(2,6-phenyl)-5,5′-bibenzimidazole]
(PBI) were synthesized according to previously reported methods.6

Synthesis of Electrocatalyst. Ten milligrams of the NanoPC was
dispersed in 20 mL of DMAc by sonication for 1 h. Five milligrams of
PyPBI was dissolved in 10 mL of DMAc by stirring for 2 h. These
solutions were then mixed and sonicated for 2 h, then filtered and
dried overnight under vacuum at 80 °C. The deposition of Pt-NPs was
carried out by the reduction of H2PtCl6·6H2O in EG aqueous solution
(EG:H2O = 3/2,v/v). First, 10 mg of NanoPC/PyPBI (or CB/PyPBI)
was dissolved in a 30 mL of EG aqueous solution to which 24 mg of
H2PtCl6·6H2O was added. The mixture was then refluxed at 140 °C
for 6 h under a N2 atmosphere. By filtration of the dispersion, we
obtained the electrocatalysts, which were dried overnight in oven at 80
°C to remove the remained solvent.
Characterization. The X-ray photoelectron spectroscopy (XPS)

spectra were measured using an AXIS-ULTRADLD (Shimadzu)
instrument. The TGA measurements were conducted using an
EXSTAR 6000, Seiko Inc., at the heating rate of 5 °C/min under
100 mL/min of air flow. The gas adsorption−desorption measure-
ments were conducted after pretreatment at 200 °C for 2 h under high
vacuum. The specific surface area and the pore size distribution were
determined by the Brunauer−Emmett−Teller (BET) method and
Barrett−Joyner−Halenda (BJH) method, respectively, based on the
N2 adsorption isotherm measurements using a BELSORP-mini (BEL
Japan, Inc.). The Raman spectra were conducted using RAMANRXN
systems (Kaiser optical systems Inc.). The TEM images were
measured using a JEM-2010 (JEOL, acceleration voltage of 120 kV)
electron microscope. A copper grid with a carbon support (Okenshoji)
was used for the TEM observations. X-ray diffraction (XRD)
measurements were carried out by using a Rigaku SmartLab

diffractometer (Cu, Kα, λ = 1.5406 Å, 40 kV, and 30 mA), the
diffraction patterns were collected from 20° to 90° at a scan rate of 1°/
min and with a step of 0.01°.

Electrochemical Measurements. The electrochemical measure-
ments were performed using a rotating ring disk electrode attached to
an RRDE-3 (Bioanalytical Systems, Inc.) with a conventional three-
electrode configuration in a vessel at room temperature. A glassy
carbon electrode (GCE) with a geometric surface area of 0.196 cm2

was used as the working electrode. A Pt wire and an Ag/AgCl were
used as the counter and reference electrodes, respectively. The
potential of the electrode was controlled by an ALS model DY2323
(BAS) potentiostat. The catalyst suspension was typically prepared as
follows. The prepared catalyst (1.0 mg) was ultrasonically dispersed in
an 80% aqueous EG solution (2.0 mL) to form a homogeneous
suspension. A portion of the dispersion was then cast on a GCE to
form a catalyst layer (the loading amount of Pt was controlled at 14
μg/cm2). Finally, the cast film on the electrode was air-dried. The
cyclic voltammetry (CV) measurements of the electrocatalysts were
carried out at the scan rate of 50 mV/s in N2-saturated 0.1 M HClO4
solution in order to determine the electrochemical surface area
(ECSA) values. All the potentials were transformed to the reference
hydrogen electrode (RHE). Carbon corrosion durability test was
conducted using the protocol35 of the Fuel Cell Commercialization
Conference of Japan (FCCJ) (measured in N2-saturated 0.1 M HClO4
at room temperature without rotation), in which the potential was
hold at 1 V vs. RHE for 30 s and changed to 1.5 V vs. RHE at the scan
speed of 0.5 V/s, then the potential was returned to 1 V vs. RHE. After
every 1000 cycles, the ECSA values were determined (see the
Supporting Information, Figure S1).

Gas Diffusion Electrode (GDE) Fabrication. A GDE was
prepared as follows. The electrocatalyst was dispersed in a 50 mL 2-
propanol aqueous solution by sonication for 1 h, which was filtered
using a carbon gas diffusion layer (GDL) as a filter paper. The Pt
loading amount on the GDL was controlled to be 0.45 mg/cm2. The
obtained GDE was dried overnight under vacuum at room
temperature to remove the residual solvent.

Preparation of PA-Doped PBI Membrane. In a 50 mL glass
bottle, 100 mg of LiBr was dissolved in DMAc (10 mL) to which 200
mg of the PBI polymer was added. The bottle was sealed under N2,
then magnetically stirred at 50 °C for 1 day to reach complete
dissolution of the polymer. The DMAc solvent was then evaporated to
obtain a solution with a PBI content of ∼4 wt %. The resultant PBI
polymer solution was carefully cast on a glass plate using a film
applicator (Elcometer 3600, 50 mm strip width). The solvent was then
gradually evaporated until the temperature reached 120 °C. The
heating process of the formed film was further continued at 120 °C for
another 5 h to ensure the removal of the solvent. The PBI film was
peeled off from the glass substrate and immersed in hot Milli-Q water
for 30 min three times in order to completely remove LiBr. Finally, the
PBI membrane was doped in an 85 wt % phosphoric acid solution for
5 days. The membrane thickness of the obtained membrane was
determined to be ∼25 μm. The doping level calculated by the weight
change of the dry membrane upon doping was 5 H3PO4 molecules/
repeat unit of the PBI.

Membrane Electrode Assembly (MEA) Fabrication and FC
Testing. The MEA was prepared by hot pressing the GDE and the
PBI membrane under 2 MPa at 120 °C for 30 s. The active area of the
MEA was 1 cm2. The FC performance of the assembled MEA was
evaluated at 120 °C without any external humidification using a
computer-controlled fuel cell test system (Model 890e, Scribner
Associate, Inc.). The polarization and the power density curves were
measured under the atmospheric pressure by flowing dry hydrogen
(flow rate; 100 mL/min) and dry air (flow rate; 200 mL/min) at the
anode and the cathode, respectively.

■ RESULTS AND DISCUSSION

Before loading the Pt-NPs on the NanoPC, the morphology
was measured by TEM. We observed continuous pores whose
diameter was ∼40 nm, which is consistent with the N2

Figure 1. Schematic illumination of preparation of CB/PyPBI/Pt and
NanoPC/PyPBI/Pt electrocatalysts.
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adsorption−desorption measurement. The specific surface area
of NanoPC was 1037 m2/g agreed with our previous report
(see the Supporting Information, Figures S2a and 3a).36 The
NanoPC also contained large amount of micropores with a
diameter of ∼2 nm (see Supporting Information, Figure S3c).
In this study, the conventional CB/Pt and CB/PyPBI/Pt were
used as the baselines. After wrapping by the PyPBI and the Pt-
NPs deposition, the XPS spectra of NanoPC/PyPBI/Pt and
CB/PyPBI/Pt showed clear N1s peaks at 400 eV derived from
PyPBI as shown in Figure 2a. Meanwhile, the peak area of the

N1s in the NanoPC/PyPBI/Pt was larger than that in the CB/
PyPBI/Pt, which is due to the higher specific surface area of the
NanoPC, in which a high amount of the PyPBI was needed to
cover all the carbon surfaces. As shown in Figure 2b, two Pt4f
peaks at 71.4 and 75.0 eV attributed to the Pt4f7/2 and Pt4f5/2,
respectively, suggesting that the main valence of the Pt species
is zero (for survey scans, see the Supporting Information,
Figure S4).37−40 The Pt-NPs were well dispersed on the PyPBI-
wrapped NanoPC with the diameter range of 2.2 ± 0.2 nm as
shown in Figure 3a, which was smaller than conventional CB/
Pt, (3.9 ± 0.6 nm, see the Supporting Information, Figure S5a)
and Pt-NPs deposited on the PyPBI-wrapped CB (4.1 ± 0.6
nm, see the Supporting Information, Figure S5b), and the
diameters obtained from the TEM were somewhat larger than
those calculated from the XRD measurements (1.9, 2.2, and 2.3
nm for NanoPC/PyPBI/Pt, CB/PyPBI/Pt,and CB/Pt, respec-
tively, see the Supporting Information, Figure S6). The
obtained smaller Pt-NP-diameters on the PyPBI-wrapped
NanoPC would be due to the high surface area of the

NanoPC/PyPBI (803 m2/g) compared to that of the CB/
PyPBI (176 m2/g, see the Supporting Information, Figures S3a
and 3b) because all the PyPBI is considered to anchor the Pt-
NPs via the Pt−N bonding.41 The diamter of the Pt-NPs
directly deposited on the NanoPC was 2.1 ± 0.2 nm (Figure
3b), which was derived from the high specific surface area of
the NanoPC (1037 m2/g).
The Pt contents in two electrocatalysts determined by the

thermal gravimetric analysis (TGA) shown in Figure 4a were

50.4 and 49.9 wt % in CB/PyPBI/Pt and NanoPC/PyPBI/Pt,
respectively. The decomposition temperature of the CB/
PyPBI/Pt was somewhat higher than that of the NanoPC/
PyPBI/Pt. This small difference in the decomposition temper-
ature is due to the difference in the carbon supports. We have
already reported that the PyPBI started the weight-loss at
around 500 °C.30 The cyclic voltammetry (CV) was recorded
in an N2-saturated 0.1 M HClO4 from 0.1 to 1.2 V vs. RHE as
shown in Figure 4b, in which the electrochemical surface areas
(ECSAs) were calculated from the hydrogen adsorption peak
from 0.1 to 0.35 V vs. RHE, based on eq 1

= QECSA /210(Pt loading on electrode)H (1)

where QH is the charge exchanged during the electroadsorption
of hydrogen on Pt.42,43

The ECSAs were determined to be 60.6, 46.8, and 63.7 m2/
gPt for CB/Pt, CB/PyPBI/Pt and NanoPC/PyPBI/Pt,

Figure 2. XPS narrow scan of (a) N1s and (b)Pt4f regions of CB/Pt
(black line), CB/PyPBI/Pt (blue line), NanoPC/Pt (green line), and
NanoPC/PyPBI/Pt (red line).

Figure 3. TEM image of (a) as-prepared NanoPC/PyPBI/Pt and (b) NanoPC/Pt. Histograms of particle size distributions (100 particles) are inset.

Figure 4. (a) TGA curves of the CB/PyPBI/Pt (blue line), NanoPC/
Pt (green line) and NanoPC/PyPBI/Pt (red line). (b) Cyclic
voltammetry (CV) curves of CB/Pt (black lline), CB/PyPBI/Pt
(blue line), NanoPC/Pt (green line), and NanoPC/PyPBI/Pt (red
line) recorded in an N2-saturated 0.1 M HClO4 solution at the scan
rate of 50 mV/s at 25 °C.
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respectively. Compared to the CB/PyPBI/Pt, the higher ECSA
of NanoPC/PyPBI/Pt was due to the smaller Pt-NPs. The
ECSA of the NanoPC/PyPBI/Pt was lower than that of our
previous report44 because the small Pt-NPs were partially
deposited onto the micropores of the NanoPC/PyPBI, which
were inactive during the ECSA measurement. The NanoPC/
PyPBI/Pt showed a comparable ECSA to that of the
commercial CB/Pt. While, the ECSA of the NanoPC/Pt was
39 m2/gPt, which was much lower than that of the NanoPC/
PyPBI/Pt (63.7 m2/gPt) because the Pt-NPs size was almost the
same as the micropore size and large amounts of the Pt-NPs
were deposited onto the micropores of the NanoPC, which
decreased the ECSA. Such results indicate that the PyPBI is
very important fot improving the efficiency of the Pt-NPs on
the NanoPC.
The durability was measured based on the protocol of the

Fuel Cell Commercialization Conference of Japan (FCCJ) in
which the durability test of the electrocatalyst was simplified to
evaluate on the electrode in a N2-saturated 0.1 M HClO4
electrolyte.35 Carbon corrosion (C+ 2H2O → CO2 + 4H+ +
4e−, 0.207 V vs. RHE) was accelerated during the potential
cycling from 1 to 1.5 V vs. RHE.45−47 The hydroquinone−
quinone (HQ/Q) redox peaks were observed for all the three
electrocatalysts at 0.5 V vs. RHE in Figure 5, implying carbon

corrosion.48 In Figure 5a, b, with the increase in potential
cycles, the current of the hydrogen absorption/desorption and
Pt oxidation/reduction peaks decreased due to the detachment
of the Pt-NPs from the bare CB and CB/PyPBI, leading to 46
and 32% loss in the ECSA, respectively. After wrapping with
PyPBI, the polymer protected the CB from serious corrosion.
Thus, the CB/PyPBI/Pt showed a higher durability than that of
the conventional CB/Pt. In contrast, for the NanoPC/PyPBI/
Pt shown in Figure 5c, d, even though the NanoPC shows an
identical Raman spectrum as that of the CB, suggesting that the
NanoPC has a similar amorphous structure to that of the CB

(see the Supporting Information, Figure S7), the ECSA after
10 000 cycles was almost the same as the initial value, indicating
that the NanoPc/PyPBI/Pt has the highest durability among
the three electrocatalysts.
To clarify the high durability of the NanoPC/PyPBI/Pt, the

morphologies of the three electrocatalysts after durability test
were observed by TEM. As shown in Figure S5c, d in the
Supporting Information, the Pt-NPs in CB/Pt and CB/PyPBI/
Pt aggregated to form larger particles with diameters of 5.0 ±
0.5 and 4.9 ± 0.5 nm because of carbon corrosion, which was
the predominant factor causing the ECSA loss.49,50 As shown in
Figure 6a, the diameter of the Pt-NPs in the NanoPC/PyPBI/
Pt also increased to 3.1 ± 0.3 nm. Surprisingly, as shown in
Figure 6b, some smaller Pt-NPs with a diameter of 1.8 ± 0.1
nm were observed (for low-magnification TEM image, see the
Supporting Information, Figure S8). The smaller Pt-NPs
maintained the identical ECSA for the NanoPC/PyPBI/Pt
after the durability test because some Pt-NPs were deposited
onto the micropores of the NanoPC, which were unavailable
before durability, whereas the micrpores became larger because
of the carbon corrosion (see the HQ/Q peaks in Figure 5c),
which made the Pt-NPs available for the ECSA measurements
as schematically illustrated in Figure 6c. A similar phenomenon
was reported by Noto et al., in which the H2O2 pretreatment
removed the micropores of the support and made the deeply
buried electrocatalyst available after the pretreatment.51,52

To study the effects of polymer wrapping and porous
structure of carbon supporting material on the fuel cell power
density, we fabricated the GDEs of three different electro-
catalysts according to our previous reports.12,32,38,40,44 Figure 7
shows the polarization curves of the electrocatalysts operated at
120 °C using dry hydrogen and air under atmospheric pressure
for the anode and cathode, respectively, which is a practicable
operation condition of the next-generation PEFCs. Before
applying the current to the single cell, the open circuit voltages
(OCV) were 0.90, 0.92, and 0.91 V for the CB/Pt, CB/PyPBI/
Pt and NanoPC/PyPBI/Pt, respectively. The potential of the
CB/PyPBI/Pt gradually decreased with the increasing the
loaded current compared to that of the CB/Pt. In comparison
to the power density of the conventional CB/Pt (115 mW/
cm2), the CB/PyPBI/Pt, it was improved to provide a value of
183 mW/cm2, which would be due to the homogeneous PyPBI
in the catalyst layer functioned as a proton conductor, which
enhanced the Pt utilization efficiency. Also the very thin layer of
the PyPBI (1−2 nm)30 has an almost negligible effect in the
electron conducitivity of the carbon support. While, by
comparison with CB/PyPBI/Pt, the power density of
NanoPC/PyPBI/Pt (342 mW/cm2) was almost 2 times higher
than that of the CB/PyPBI/Pt. The enhanced FC performance
was due the nanoporous structure of the NanoPC that
facilitates the diffusion of the reactant.

■ CONCLUSIONS
In conclusion, we used a nanoporous carbon (NanoPC) that
has a porous structure with a high surface area of 1037 m2/g to
fabricate an electrocatalyst, NanoPC/PyPBI/Pt, having Pt-NPs
of ∼2.2 nm diameter that were homogeneously deposited on
the PyPBI-wrapped NanoPC. Even after 10 000 start-up/
shutdown cycles in the range of 1.0 to 1.5 V vs. RHE, the
NanoPC/PyPBI/Pt showed almost no loss in electrochemical
surface area (ECSA), indicating very high electrochemical
stability. Such behavior was quite different from that of the CB/
PyPBI/Pt, and conventional CB/Pt catalysts. The power

Figure 5. CV curves of the (a) CB/Pt, (b) CB/PyPBI/Pt, and (c)
NanoPC/PyPBI/Pt after 2000, 4000, 6000, 8000, and 10 000 potential
cycles test. (d) Normalized ECSAs of CB/Pt (black line), CB/PyPBI/
Pt (blue line) and NanoPC/PyPBI/Pt (red line) as a function of the
number of potential cycles in the range of 1.0−1.5 V vs. RHE.
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density of the NanoPC/PyPBI/Pt was 342 mW/cm2, which
was much higher than those of the CB/PyPBI/Pt and CB/Pt
because of the unique nanoporous structure that facilitates
diffusion of the reactants. The present study provides useful
information for the preparation of an electrocatalyst with a high
durability and performance in high-temperature PEFCs.
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